Subsurface Magnetics: Accurate, Rapid & Tough

Jessy Smart

Geo-Magnetic Ground Scanner
Supracon AG is a leading high tech company in the sector of superconducting electronics and has specialized in the development, fabrication, and marketing of ultra-sensitive superconductive sensors, read-out electronics and measuring systems. The sensors are based on an unique microfabrication technology.

“this advanced geomagnetic scanner is available for sale, for rent, or alternatively we provide the measurements as a service.”

All Supracon products are being fabricated under the German TÜV (German Association for Technical Inspection) controlled quality management system to ensure the highest standards.
In more than 10 years of research and development work Supracon and the Leibniz Institute of Photonic Technology (IPHT) have achieved to make the ultimate sensitivity of Superconducting Quantum Interference Devices (SQUID) applicable for geomagnetic prospection systems. The system JESSY SMART is designed for a fast, 3-dimensional geomagnetic mapping of buried near surface magnetic anomalies. The potential applications vary from building ground evaluation to archaeological prospection and unexploded ordnances detection. JESSY SMART is approved and successfully applied in many exploration campaigns worldwide. It is robust and field proof.

YOUR ADVANTAGES WITH JESSY SMART

- High sensitivity for small or deep-seated magnetic anomalies
- Fast mapping of up to 3 ha/hour
- 1000 data/sec readings allow high spatial resolution in the cm range
- 2-D magnetic maps for optimized probing and highest detection certainty
- In measuring terrain unsuitable for driving there is the option of using a small hand pushed cart
- Differential GPS enables highest precision locating the magnetic anomalies in the cm range
- The scanning process is supported by GPS track control for complete and consistent data acquisition
• Fast data processing algorithms allow first data analysis directly in the field
• Locating and identification of objects in a geo-referenced magnetogram see left
• Detailed post processing analysis for precise determination of location and dimensioning of magnetic anomalies

• Detection of building and foundation remnants, power lines, pipelines, cavities, unexploded ordnances, brownfields, charcoal, ashes, clay, ceramics, bricks, geological structures
• Precise digital terrain model information in a height resolution of 10 centimeters
CASE HISTORY – NIEDERZIMMERN (THURINGIA), GERMANY

Measuring task: Investigation of a 5600 years old Neolithic double ditch ring structure

Client: Thuringian State Office for Cultural Heritage Preservation

Area: 27 ha

Measuring time: 3 days

Measurement conditions: Frozen soil, small snow cover, high frequency disturbing signals

Remains of palisades
Palisaded trench-like structures
Recent farm track
Refilled pit
Fenced area
Recent metal pieces
The double ring ditch

ARCHAEOLOGY

JESSY SMART in winter conditions

MAGNETOGRAM IN A TOPOGRAPHIC MODEL

© V. Schultze, S. Linzen et al.
Archaeological Prospection 15 p. 113-121, (2008)
Results for Archaeologist

- Fast and easy 2-D maps (magnetogram) in grey scale Picture
- Detection of archaeologic anomalies and exact location
- Interpretation of the measurement results
- Data integration of magnetogram with maps and aerial pictures
- Unique 3-D information about anomalies based on full gradient tensor data in post processing

Case History – Palpa, Peru

Measuring task:
Locating settlement structure of the Ancient Nasca Culture

Client:
Deutsches Archäologisches Institut (DAI)

Area:
9 ha

Measuring time:
1 day

Measurement conditions:
Dry, dusty and hot weather

2-D Magnetogram

S. Linzen et al. in Reindel, M., Wagner, G. A. (editors):
BUILDING GROUND ANALYSIS

MOTIVATION

• Detection of magnetic anomalies problematic for the construction project such as archaeological features, remains of buildings and brownfield situation, detection of cavities and geological structures
• Higher security of building ground stability

RESULTS FOR CLIENTS

• Planning reliability by prevention of unforeseen construction ground problems
• Minimization of exploration time
• Minimal residual risk in comparison with selective drilling exploration

CASE HISTORY – NORDHAUSEN (THURINGIA), GERMANY

Mission:
Detection of amount remains of building foundations hidden underground

Client:
JENA-GEOS® – Ingenieurbüro GmbH

Area:
0.7 ha

Measuring time:
1.5 h

Measurement conditions:
Sunny day, decommissioned premises
CASE HISTORY – ROAD CONSTRUCTION IN SOUTH THURINGIA, GERMANY

Mission:
Ground examination for road construction in old mining area

Client:
JENA-GEOS® – Ingenieurbüro GmbH

Area:
5,7 ha

Measuring time:
2,5 h

Measurement conditions:
Rain, wet ground

RESULTS FOR CUSTOMERS

• No indication of old mining activities in the area envisaged for road construction
• Localisation of geological structures in the underground
DETECTION OF UNEXPLODED ORDNANCES (UXO)

MOTIVATION
Detection and location of:
- unexploded bombs
- remains of weapons and munitions
- bomb craters and cavity backfills
- metal objects

RESULTS FOR CUSTOMERS
- Fast measurement covering large areas
- Detection range up to 10 meters
- Exact location of anomalies
- Positional accuracy by differential GPS
 > high resolution in 3D (cm range)

CASE HISTORY – RESIDENTIAL AREA EXTENSION NEAR KASSEL, GERMANY

Mission:
Localisation of remains of World War II aircraft bombs, munition and bomb craters before municipal construction work

Client:
Society of Property Conversion Schorfheide

Area:
4 ha

Measuring time:
6 h

RESULT FOR CUSTOMERS
Magnetogram as greyscale image or with colored anomaly highlighting measurement grid can be georeferenced and embedded in maps or aerial images to allow very accurate location.
CASE HISTORY – CITY CENTRE, PLAUEN, GERMANY

Mission:
Investigation and clearing of unexploded ordnances before road construction

Client:
Regulatory Agency Plauen, Germany

Area:
Length about 400 meter [0,2 ha]

Measuring time:
1,5 h

Measuring conditions:
Measurement at night time to minimize the road traffic and construction work disturbing influence

RESULTS FOR CUSTOMERS

Detection of many magnetic objects, but no sign of unexploded ordnances.
Sensitivity of various magnetic field sensors

Sources
- Earth field
- Roman stonewall
- Refilled pits and ditches
- Post-holes, palisades
- Brainsignals

B | Tesla
- 1 E-4
- 1 E-5
- Micro
- 1 E-7
- 1 E-8
- Nano
- 1 E-10
- 1 E-11
- Pico
- 1 E-13
- 1 E-14
- Femto

Sensitivity of Sensors
- Fluxgate Bartington MAG03
- Cs-Magnetometer Scintrex CS-03
- SQUID IPHT Jena

This project was co-financed by the European Union and the Federal State of Thuringia.